Hierarchical Coding Vectors for Scene Level Land-Use Classification
نویسندگان
چکیده
Land-use classification from remote sensing images has become an important but challenging task. This paper proposes Hierarchical Coding Vectors (HCV), a novel representation based on hierarchically coding structures, for scene level land-use classification. We stack multiple Bag of Visual Words (BOVW) coding layers and one Fisher coding layer to develop the hierarchical feature learning structure. In BOVW coding layers, we extract local descriptors from a geographical image with densely sampled interest points, and encode them using soft assignment (SA). The Fisher coding layer encodes those semi-local features with Fisher vectors (FV) and aggregates them to develop a final global representation. The graphical semantic information is refined by feeding the output of one layer into the next computation layer. HCV describes the geographical images through a high-level representation of richer semantic information by using a hierarchical coding structure. The experimental results on the 21-Class Land Use (LU) and RSSCN7 image databases indicate the effectiveness of the proposed HCV. Combined with the standard FV, our method (FV + HCV) achieves superior performance compared to the state-of-the-art methods on the two databases, obtaining the average classification accuracy of 91.5% on the LU database and 86.4% on the RSSCN7 database.
منابع مشابه
Traffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملImproved Class-Specific Codebook with Two-Step Classification for Scene-Level Classification of High Resolution Remote Sensing Images
With the rapid advances in sensors of remote sensing satellites, a large number of high-resolution images (HRIs) can be accessed every day. Land use classification using high-resolution images has become increasingly important as it can help to overcome the problems of haphazard, deteriorating environmental quality, loss of prime agricultural lands, and destruction of important wetlands, and so...
متن کاملDeveloping Spatial Re-classification Techniques for Improved Land-use Monitoring Using High Spatial Resolution Images
The reasons for the poor performance of conventional, per-pixel classification algorithms applied to satellite sensor images of urban areas are examined. It is argued that standard algorithms are poorly adapted to distinguish between different urban land-use categories, particularly in high spatial resolution images, due to the complex spatial pattern of spectrally distinct land-cover types in ...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملCompressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016